(本小题满分分)某学校高三年级有学生1000名,经调查研究,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学),现用分层抽样方法(按A类、B类分二层)从该年级的学生中共抽查100名同学.
(Ⅰ)求甲、乙两同学都被抽到的概率,其中甲为A类同学,乙为B类同学;
(Ⅱ) 测得该年级所抽查的100名同学身高(单位:厘米) 频率分布直方图如右图:
(ⅰ) 统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值为165)作为代表.据此,计算这100名学生身高数据的期望
及标准差
(精确到0.1);
(ⅱ) 若总体服从正态分布,以样本估计总体,据此,估计该年级身高在范围中的学生的人数.
(Ⅲ) 如果以身高达170cm作为达标的标准,对抽取的100名学生,得到下列联表:
体育锻炼与身高达标2×2列联表
|
身高达标 |
身高不达标 |
总计 |
积极参加体育锻炼 |
40 |
|
|
不积极参加体育锻炼 |
|
15 |
|
总计 |
|
|
100 |
(ⅰ)完成上表;
(ⅱ)请问有多大的把握认为体育锻炼与身高达标有关系?
参考公式:K=
,参考数据:
P(K![]() ![]() |
0.40 |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
k |
0.708 |
1.323 |
2.072 |
2.706 |
3.841 |
5.024 |
农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下:(单位:)
甲:9,10,11,12,10,20
乙:8,14,13,10,12,21.
(1)在上面给出的方框内绘出所抽取的甲、乙两种麦苗株高的茎叶图;
(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.
已知一组数据的频率分布直方图如下.求众数、中位数、平均数.
设计求的算法,并画出相应的程序框图.
已知圆,设点
是直线
上的两点,它们的横坐标分别是
,点
在线段
上,过
点作圆
的切线
,切点为
.
(1)若,求直线
的方程;
(2)经过三点的圆的圆心是
,求线段
(
为坐标原点)长的最小值
.
设函数在定义域
是奇函数,当
时,
.
(1)当,求
;
(2)对任意,
,不等式
都成立,求
的取值范围.