设函数,其中为常数.(Ⅰ)当时,判断函数在定义域上的单调性;(Ⅱ)若函数有极值点,求的取值范围及的极值点;(Ⅲ)若,试利用(II)求证:n3时,恒有.
已知椭圆()的离心率为,且满足右焦点到直线的距离为, (Ⅰ)求椭圆的方程; (Ⅱ)已知,过原点且斜率为的直线与椭圆交于两点,求面积的最大值。
已知抛物线的准线方程为。 (Ⅰ)求抛物线的标准方程; (Ⅱ)若过点的直线与抛物线相交于两点,且以为直径的圆过原点,求证为常数,并求出此常数。
已知函数在与时都取得极值 (1)求的值与函数的单调区间 (2)若,且对,不等式恒成立,求m的取值范围.
已知双曲线:的焦距为,且经过点。 (Ⅰ)求双曲线的方程和其渐近线方程; (Ⅱ)若直线与双曲线有且只有一个公共点,求所有满足条件的的取值。
命题:;命题:解集非空. 若,求的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号