如图所示,半径R = 0.8m的四分之一光滑圆弧轨道位于竖直平面内,与长CD = 2.0m的绝缘水平面平滑连接。水平面右侧空间存在互相垂直的匀强电场和匀强磁场,电场强度E = 40N/C,方向竖直向上,磁场的磁感应强度B = 1.0T,方向垂直纸面向外。两个质量均为m = 2.0×10-6kg的小球a和b,a球不带电,b球带q = 1.0×10-6C的正电,并静止于水平面右边缘处。将a球从圆弧轨道顶端由静止释放,运动到D点与b球发生正碰,碰撞时间极短,碰后两球粘合在一起飞入复合场中,最后落在地面上的P点。已知小球a在水平面上运动时所受的摩擦阻力f = 0.1mg, PN =
,取g =10m/s2。a、b均可作为质点。(结果保留三位有效数字)求:
(1)小球a与b相碰后瞬间速度的大小v
(2)水平面离地面的高度h
(3)从小球a开始释放到落地前瞬间的整个运动过程中,ab系统损失的机械能ΔE。
图中的实线是一列简谐波在某一时刻的波形曲线.经0.2s后,其波形如图中虚线所示.设该波的周期T大于0.2s,求:
(1)由图中读出波的振幅和波长;
(2)如果波向右传播,波速是多大?波的周期是多大?
(3)如果波向左传播,波速是多大、波的周期是多大?
如图8所示是一个单摆的振动图象,根据图象所给的数据,试求:
(1)振幅;
(2)周期;
(3)单摆的摆长;
(4)A、B、C三点所表示的对应位置中,在哪个位置上摆球的速度最大,在哪个位置上回复力产生的加速度最大?它们的方向如何?(g=10m/s2)
如图a所示,水平直线MN下方有竖直向上的匀强电场,现将一重力不计、比荷的正电荷置于电场中的O点由静止释放,经过
×10—5s后,电荷以v0=1.5×l04m/s的速度通过MN进入其上方的匀强磁场,磁场与纸面垂直,磁感应强度B按图b所示规律周期性变化(图b中磁场以垂直纸面向外为正,以电荷第一次通过MN时为t=0时刻)。求:
(1)匀强电场的电场强度E
(2)图b中×10-5s时刻电荷与O点的水平距离
(3)如果在O点右方d= 68cm处有一垂直于MN的足够大的挡板,求电荷从O点出发运动到挡板所需的时间。(,
)
一轻质细绳一端系一质量为的小球A,另一端挂在光滑水平轴O 上,O到小球的距离为L=0.1m,小球跟水平面接触,但无相互作用,在球的两侧等距离处分别固定一个光滑的斜面和一个挡板,如图所示,水平距离s为2m,动摩擦因数为0.25.现有一小滑块B,质量也为m,从斜面上滑下,与小球碰撞时交换速度,与挡板碰撞不损失机械能.若不计空气阻力,并将滑块和小球都视为质点,g取10m/s2,试问:
(1)若滑块B从斜面某一高度h处滑下与小球第一次碰撞后,使小球恰好在竖直平面内做圆周运动,求此高度h.
(2)若滑块B从h=5m处滑下,求滑块B与小球第一次碰后瞬间绳子对小球的拉力.
(3)若滑块B从h="5m" 处下滑与小球碰撞后,小球在竖直平面内做圆周运动,求小球做完整圆周运动的次数n.
一辆值勤的警车停在公路边,当警员发现从他旁边以10 m/s的速度匀速行驶的货车严重超载时,决定前去追赶,经过5.5 s后警车发动起来,并以一定的加速度做匀加速运动,但警车行驶的最大速度是25 m/s.警车发动后刚好用12 s的时间追上货车,问:(1)警车启动时的加速度多大?
(2)警车在追赶货车的过程中,两车间的最大距离是多少?