(本小题满分12分)已知,函数在处取得极值,曲线过原点和点.若曲线在点处的切线与直线的夹角为,且直线的倾斜角(Ⅰ)求的解析式;(Ⅱ)若函数在区间上是增函数,求实数的取值范围;(Ⅲ)若、,求证:
已知y=f(x)的图象(如图1)经A=作用后变换为曲线C(如图2). (1)求矩阵A. (2)求矩阵A的特征值.
已知2×2矩阵M=有特征值λ=-1及对应的一个特征向量e1=. (1)求矩阵M. (2)设曲线C在矩阵M的作用下得到的方程为x2+2y2=1,求曲线C的方程.
对任意实数x,矩阵总存在特征向量,求m的取值范围.
若矩阵A有特征值λ1=2,λ2=-1,它们所对应的特征向量分别为e1=和e2=. (1)求矩阵A. (2)求曲线x2+y2=1在矩阵A的变换下得到的新曲线方程.
已知矩阵A=,向量α=. (1)求A的特征值λ1,λ2和对应的特征向量α1,α2. (2)计算A5α的值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号