上海世博会深圳馆1号作品《大芬丽莎》是由大芬村507名画师集体创作的999幅油画组合而成的世界名画《蒙娜丽莎》,因其诞生于大芬村,因此被命名为《大芬丽莎》.某部门从参加创作的507名画师中随机抽出100名画师,测得画师年龄情况如下表所示.
(1)频率分布表中的①、②位置应填什么数据?并在答题卡中补全频率分布直方图(图4),再根据频率分布直方图估计这507个画师中年龄在岁的人数(结果取整数);
(2)在抽出的100名画师中按年龄再采用分层抽样法抽取20人参加上海世博会深圳馆志愿者活动,其中选取2名画师担任解说员工作,记这2名画师中“年龄低于30岁”的人数为ξ,求ξ的分布列及数学期望.
分组 (单位:岁) |
频数 |
频率 |
![]() |
5 |
0.050 |
![]() |
① |
0.200 |
![]() |
35 |
② |
![]() |
30 |
0.300 |
![]() |
10 |
0.100 |
合计 |
100 |
1.00 |
如图,四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC中点,作EF⊥PB交PB于F
(1)求证:PA∥平面EDB;
(2)求证:PB⊥平面EFD;
(3)求二面角C-PB-D的大小。
在正三棱柱ABC-A1B1C1中,若BB1=1,AB=,求AB1与C1B所成角的大小。
函数的定义域为
,且满足对于任意
,有
.
⑴求的值;
⑵判断的奇偶性并证明;
⑶如果≤
,且
在
上是增函数,求
的取值范围.
已知函数
⑴若的定义域和值域均是
,求实数
的值;
⑵若在
上是减函数,且对任意的
,总有
≤
,求实数
的取值范围.
某上市股票在30天内每股的交易价格(元)与时间
(天)所组成的有序数对
落在下图中的两条线段上,该股票在30天内的日交易量
(万股)与时间
(天)的部分数据如下表所示.
第t天 |
4 |
10 |
16 |
22 |
Q(万股) |
36 |
30 |
24 |
18 |
⑴根据提供的图象,写出该种股票每股交易价格(元)与时间
(天)所满足的函数关系式;
⑵根据表中数据确定日交易量(万股)与时间
(天)的一次函数关系式;
⑶在(2)的结论下,用(万元)表示该股票日交易额,写出
关于
的函数关系式,并求这30天中第几天日交易额最大,最大值为多少?