18.(本小题满分14分)
如图5,四边形是圆柱
的轴截面,点
在圆柱
的底面圆周上,
是
的中点,圆柱
的底面圆的半径
,侧面积为
,
.
(1)求证:;
(2)求二面角的平面角的余弦值.
已知等差数列的前n项和为
,
(1)求数列的通项公式;
(2)设,求数列
的前n项和
.
已知向量,函数
.
(1)求函数f(x)的最小正周期T;
(2)已知a,b,c分别为△ABC内角A,B,C的对边,其中A为锐角,a=,c=4,且f(A)=1,求△ABC的面积S.
设命题;命题
.
如果命题“为真命题,“
”为假命题,求实数a的取值范围.
(本小题满分14分)设函数.
(1)若函数在
处有极值,求函数
的最大值;
(2)①是否存在实数,使得关于
的不等式
在
上恒成立?若存在,求出
的取值范围;若不存在,说明理由;
②证明:不等式.
(本小题满分14分)某商场预计2015年从1月起前个月顾客对某种商品的需求总量
(单位:件)
(1)写出第个月的需求量
的表达式;
(2)若第个月的销售量
(单位:件),每件利润
(单位:元),求该商场销售该商品,预计第几个月的月利润达到最大值?月利润的最大值是多少?(参考数据:
)