国家助学贷款是由财政贴息的信用贷款,旨在帮助高校家庭经济困难学生支付在校学习期间所需的学费、住宿费及生活费.每一年度申请总额不超过6000元.某大学2010届毕业生凌霄在本科期间共申请了元助学贷款,并承诺在毕业后
年内(按
个月计)全部还清.
签约的单位提供的工资标准为第一年内每月元,第
个月开始,每月工资比前一个月增加
直到
元.凌霄同学计划前
个月每个月还款额为
,第
个月开始,每月还款额比前一月多
元.
(Ⅰ)若凌霄恰好在第36个月(即毕业后三年)还清贷款,求的值;
(Ⅱ)当时,凌霄同学将在第几个月还清最后一笔贷款?他当月工资的余额是否能满足每月
元的基本生活费?
(参考数据:)
已知等差数列{an}中,a2=8,前10项和S10=185.
(1)求通项an;
(2)若从数列{an}中依次取第2项、第4项、第8项…第2n项……按原来的顺序组成一个新的数列{bn},求数列{bn}的前n项和Tn.
已知等差数列{an}中,a2=8,前10项和S10=185.
(1)求通项an;
(2)若从数列{an}中依次取第2项、第4项、第8项…第2n项……按原来的顺序组成一个新的数列{bn},求数列{bn}的前n项和Tn.
数列{an}中,a1=8,a4=2且满足an+2=2an+1-an n∈N
(1)求数列{an}的通项公式;
(2)设Sn=|a1|+|a2|+…+|an|,求sn;
(3)设bn=( n∈N),Tn=b1+b2+…+bn( n∈N),是否存在最大的整数m,使得对任意n∈N,均有Tn>成立?若存在,求出m的值;若不存在,请说明理由。
在数列中,
,
.
(1)求数列的前
项和
;(2)证明不等式
,对任意
皆成立。
已知等差数列的前项和为
,
,且
,
.
⑴.求数列的通项公式;⑵.求证:
.