游客
题文

.如图5,四棱锥中,底面为矩形,底面分别为的中点

(1)求证:
(2)若,求与面所成角的余弦值

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

在平面直角坐标系中,设点(1,0),直线:,点在直线上移动,是线段轴的交点, .
(Ⅰ)求动点的轨迹的方程;
(Ⅱ) 记的轨迹的方程为,过点作两条互相垂直的曲线的弦,设的中点分别为.求证:直线必过定点

已知椭圆的离心率为,F为椭圆在x轴正半轴上的焦点,M、N两点在椭圆C上,且,定点A(-4,0).
(1)求证:当时.,
(2)若当时有,求椭圆C的方程;
(3)在(2)的条件下,当M、N两点在椭圆C运动时,当的值为6时, 求出直线MN的方程.

设直线与椭圆相交于AB两个不同的点,与x轴相交于点C,记O为坐标原点.
(1)证明:
(2)若的面积取得最大值时的椭圆方程.

设动点到定点的距离比它到轴的距离大1,记点的轨迹为曲线.
(1)求点的轨迹方程;
(2)设圆,且圆心在曲线上,是圆轴上截得的弦,试探究当运动时,弦长是否为定值?为什么?

已知椭圆C:的左、右焦点为F1、F2,离心率为e. 直线与x轴、y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设
(Ⅰ)证明:
(Ⅱ)若的周长为6;写出椭圆C的方程.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号