设动点
到定点
的距离比它到
轴的距离大1,记点
的轨迹为曲线
.
(1)求点
的轨迹方程;
(2)设圆
过
,且圆心
在曲线
上,
是圆
在
轴上截得的弦,试探究当
运动时,弦长
是否为定值?为什么?
已知函数f(x)=loga
(a>0且a≠1)
(1)求f(x)的定义域;
(2)判断f(x)的奇偶性;
(3)判断f(x)在(1,+∞)上的单调性,并予以证明.
(本题12分)如图,长方体
中,
,
,点
为
的中点。
(1)求证:直线
∥平面
;
(2)求证:平面
平面
;
(3)求证:直线
平面
。
已知函数
是其定义域内的奇函数,且
18
(1)求f(x)的表达式;
(2)设
(x > 0 )
求
的值.
把边长为60cm的正方形铁皮的四角切去边长为xcm的相等的正方形,然后折成一个高度为xcm的无盖的长方体的盒子,问x取何值时,盒子的容积最大,最大容积是多少?
(本小题满分12分)
已知函数f (x
)=ln(1+x)+a (x+1)2(a为常数).
(Ⅰ)若函数f (x)在x=1处有极值,判断该极值是极大值还是极小值;
(Ⅱ)对满足条件a≤
的任意一个a,方程f (x)=0在区间(0,3)内实数根的个数是多少?