若函数在点
处的切线方程为
(1) 求的值;
(2) 求的单调递增区间;
(3)若对于任意的,恒有
成立,求实数
的取值范围
为了对某课题进行研究,用分层抽样方法从三所高校
的相关人员中,抽取若干人组成研究小组、有关数据见下表(单位:人)
(I)求
;
(II)若从高校
抽取的人中选2人作专题发言,求这二人都来自高校
的概率。
已知函数
(I)求函数
的最小正周期。
(II) 求函数
的最大值及
取最大值时
的集合。
设函数
.
(Ⅰ)证明:当
时,
;
(Ⅱ)设当
时,
,求
的取值范围.
己知斜率为1的直线
与双曲线
:
相交于
、
两点,且
的中点为
.
(Ⅰ)求
的离心率;
(Ⅱ)设
的右顶点为
,右焦点为
,
,证明:过
三点的圆与
轴相切.
如图,由
到
的电路中有4个元件,分别标为
,电流能通过
的概率都是
,电流能通过
的概率是0.9.电流能否通过各元件相互独立.已知
中至少有一个能通过电流的概率为0.999.
(Ⅰ)求
;
(Ⅱ)求电流能在
与
之间通过的概率;
(Ⅲ)
表示
中能通过电流的元件个数,求
的期望.