(本小题满分13分)把一个正方体的表面涂上红色,在它的长、宽、高上等距离地各切三刀,则大正方体被分割成64个大小相等的小正方体,将这些小正方体均匀地搅混在一起,如果从中任取1个,求下列事件的概率
(1)事件A=“这个小正方体各个面都没有涂红色”
(2)事件B=“这个小正方体只有1个面涂红色”
(3)事件C=“这个小正方体至少2个面涂红色”
设函数x.
(1)求f(x)的单调增区间;
(2)若x∈(0,4),求y=f(x)的值域.
已知f(x)=|2x﹣1|﹣|x+1|.
(Ⅰ)求f(x)>x解集;
(Ⅱ)若a+b=1,对∀a,b∈(0,+∞),+
≥|2x﹣1|﹣|x+1|恒成立,求x的取值范围.
已知在直角坐标系xOy中,直线l的参数方程为,(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2﹣4ρcosθ+3=0.
(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)设点P是曲线C上的一个动点,求它到直线l的距离d的取值范围.
如图,AB是的⊙O直径,CB与⊙O相切于B,E为线段CB上一点,连接AC、AE分别交⊙O于D、G两点,连接DG交CB于点F.
(Ⅰ)求证:C、D、G、E四点共圆.
(Ⅱ)若F为EB的三等分点且靠近E,EG=1,GA=3,求线段CE的长.
已知f(x)=.
(1)求f(x)的单调区间;
(2)令g(x)=ax2﹣2lnx,则g(x)=1时有两个不同的根,求a的取值范围;
(3)存在x1,x2∈(1,+∞)且x1≠x2,使|f(x1)﹣f(x2)|≥k|lnx1﹣lnx2|成立,求k的取值范围.