选修4-1:几何证明选讲
△ABC内接于⊙O,AB=AC,直线MN切⊙O于C,弦BD∥MN,AC、BD交于点E
(1)求证:△ABE≌△ACD
(2)AB=6,BC=4,求AE
(本小题满分12分)
已知点为双曲线
(
为正常数)上任一点,
为双曲线的右焦点,过
作右准线的垂线,垂足为
,连接
并延长交
轴于
.
(1)求线段的中点
的轨迹
的方程;
(2)设轨迹与
轴交于
两点,在
上任取一点
,直线
分别交
轴于
两点.求证:以
为直径的圆过两定点.
(本小题满分14分)
已知曲线与直线
交于两点
和
,且
.记曲线
在点
和点
之间那一段
与线段
所围成的平面区域(含边界)为
.设点
是
上的任一点,且点
与点
和点
均不重合.
(1)若点是线段
的中点,试求线段
的中点
的轨迹方程;
(2)若曲线与
有公共点,试求
的最小值.
(本小题满分14分)
过抛物线的对称轴上一点
的直线与抛物线相交于M、N两点,自M、N向直线
作垂线,垂足分别为
、
。
(Ⅰ)当时,求证:
⊥
;
(Ⅱ)记、
、
的面积分别为
、
、
,是否存在
,使得对任意的
,都有
成立。若存在,求出
的值;若不存在,说明理由。
(本小题满分14分)如图,已知圆
是椭圆
的内接△
的内切圆, 其中
为椭圆的左顶点.
(1)求圆的半径
;
(2)过点作圆
的两条切线交椭圆于
两点,
|
|
证明:直线与圆
相切.
点
在椭圆
上,
直线
与直线
垂直,
为坐标原点,直线
的倾斜角为
,直线
的倾斜角为
.
(I)证明: 点
是椭圆
与直线
的唯一交点;
(II)证明:
构成等比数列.