(本小题满分14分)
一种计算装置,有一数据入口点A和一个运算出口点B ,按照某种运算程序:
①当从A口输入自然数1时,从B口得到 ,记为
;
②当从A口输入自然数
时,在B口得到的结果
是前一个结果
的
倍;
试问:当从A口分别输入自然数2 ,3 ,4 时,从B口分别得到什么数?试猜想的关系式,并证明你的结论。
如图,在平面直角坐标系中,椭圆
的右焦点为
,离心率为
.
分别过,
的两条弦
,
相交于点
(异于
,
两点),且
.
(1)求椭圆的方程;
(2)求证:直线,
的斜率之和为定值.
某单位设计的两种密封玻璃窗如图所示:图1是单层玻璃,厚度为8 mm;图2是双层中空玻璃,厚度均为4 mm,中间留有厚度为的空气隔层.根据热传导知识,对于厚度为
的均匀介质,两侧的温度差为
,单位时间内,在单位面积上通过的热量
,其中
为热传导系数.假定单位时间内,在单位面积上通过每一层玻璃及空气隔层的热量相等.(注:玻璃的热传导系数为
,空气的热传导系数为
.)
(1)设室内,室外温度均分别为,
,内层玻璃外侧温度为
,外层玻璃内侧温度为
,且
.试分别求出单层玻璃和双层中空玻璃单位时间内,在单位面积上通过的热量(结果用
,
及
表示);
(2)为使双层中空玻璃单位时间内,在单位面积上通过的热量只有单层玻璃的4%,应如何设计的大小?
在△ABC中,角,
,
所对的边分别为
,
,c.已知
.
(1)求角的大小;
(2)设,求T的取值范围.
如图,在四棱锥中,底面
是矩形,四条侧棱长均相等.
(1)求证:平面
;
(2)求证:平面平面
.
设函数,
.
(1) 解不等式;
(2) 设函数,且
在
上恒成立,求实数
的取值范围.