(本小题满分14分)
已知函数,
,它们的定义域都是
,其中
,
(Ⅰ)当时,求函数
的单调区间;
(Ⅱ)当时,对任意
,求证:
(Ⅲ)令,问是否存在实数
使得
的最小值是3,如果存在,求出
的值;如果不存在,说明理由。
某租赁公司拥有汽车100辆.当每辆车的月租金为3 000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(1)当每辆车的月租金定为3 600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
设函数f(x)=是奇函数(a,b,c都是整数)且f(1)=2,f(2)<3
(1)求a,b,c的值;
(2)当x<0,f(x)的单调性如何?用单调性定义证明你的结论。
已知f(x)=x2-2x+1,g(x)是一次函数,且f[g(x)]=4x2,求g(x)的解析式.
提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:
当20≤x≤200时,车流速度v是车流密度x的一次函数.当0≤x≤200时,求函数v(x)的表达式.
袋中有个白球和
个黑球,每次从中任取
个球,每次取出黑球后不再放回去,直到取出白球为止.求取球次数
的分布列,并求
出
的期望值和方差.