袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为,现有甲、乙两人从袋中轮流摸取1球.甲先取,乙后取,然后甲再取…取后不放回,每人最多取两次,若两人中有一人首先取到白球时则终止,每个球在每一次被取出的机会是等可能的.
(1)求袋中原有白球的个数;
(2)求甲取到白球的概率;
(3)求取球4次终止的概率.
已知直线,
(1)系数为什么值时,方程表示通过原点的直线;
(2)系数满足什么关系时与坐标轴都相交;
(3)系数满足什么条件时只与x轴相交;
(4)系数满足什么条件时是x轴;
(5)设为直线
上一点,
证明:这条直线的方程可以写成.
已知一条曲线在x轴的上方,它上面的每一点到点A(0,2)的距离减去它到x轴的距离的差都是2,求这条曲线的方程.
用坐标法证明三角形的中位线长为其对应边长的一半.
判断下列A(-1,-1),B(0,1),C(1,3)三点是否共线,并给出证明.
已知点P (x, y),则求①关于y轴的对称点;②关于x轴的对称点;③关于原点的对称点;④关于直线y = x的对称点;⑤关于直线y=-x的对称点(-y, -x).