(本小题满分14分) 已知椭圆的左、右焦点分别为F1、F2,短轴两个端点为A、B,且四边形F1AF2B是边长为2的正方形。 (1)求椭圆的方程; (2)若C、D分别是椭圆长的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P。证明:为定值。 (3)在(2)的条件下,试问x轴上是否存异于点C的定点Q,使得以MP为直径的圆恒过直线DP、MQ的交点,若存在,求出点Q的坐标;若不存在,请说明理由。
设数列的前n项的和与的关系是. (1)求数列的通项; (2)求数列的前项和.
向量.函数. (1)若,求函数的单调减区间; (2)将函数的图像向左平移个单位得到函数,如果函数在上至少存在2014个最值点,求的最小值.
观察下面一组组合数等式:;;; ………… (1)由以上规律,请写出第个等式并证明; (2)随机变量,求证:.
正四面体边长为2.分别为中点. (1)求证:平面; (2)求二面角的余弦值.
设函数. (1)若函数在区间(-2,0)内恰有两个零点,求a的取值范围; (2)当a=1时,求函数在区间[t,t+3]上的最大值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号