如图,棱柱ABCD-A1B1C1D1的底面ABCD为菱形,平面AA1C1C⊥平面ABCD.
(1)证明:BD⊥AA1;
(2)证明:平面AB1C//平面DA1C1
(3)在直线CC1上是否存在点P,使BP//平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.
(本小题满分12分,(Ⅰ)问5分,(Ⅱ)问7分)
已知以原点为中心的椭圆的一条准线方程为
,离心率
,
是椭圆上的动点。
(Ⅰ)若的坐标分别是
,求
的最大值;
(Ⅱ)如题(20)图,点的坐标为
,
是圆
上的点,
是点
在
轴上的射影,点
满足条件:
,
,求线段
的中点
的轨迹方程。
(本小题满分12分,(Ⅰ)问5分,(Ⅱ)问7分)
如题(19)图,在四棱锥中,
且
;平面
平面
,
;
为
的中点,
。求:
(Ⅰ)点到平面
的距离;
(Ⅱ)二面角的大小。
在直角坐标系中,△OAB的顶点坐标O(0 , 0),A(2, 0),B(1, ),求△OAB在矩阵MN的作用下变换所得到的图形的面积,其中矩阵,
如图,四边形ABCD内接于,
,过A点的切线交CB的延长线于E点.
求证:.
设方程(q为参数)表示的曲线为C,求在曲线C上到原点O距离最小的点P的坐标.