游客
题文

某投资公司2010年初准备将1000万投资到“低碳”项目上,现有两个项目可供选择
项目一:新能源汽车。据市场调研,投资到该项目上,到年底可获利30%,也可能亏损15%,且这两种情况发生的概率分别为
项目二:通信设备。据市场调研,投资到该项目上,到年底可获利50%,可能损失30%,也可能不赔不赚,且这三种情况发生的概率分别为
(1)针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由;
(2)若市场预期不变,该投资公司按照你选择的项目长期投资(每年的利润和本金继续用作投资),问大约在哪一年的年底该投资公司的总资产(利润+本金)可翻一番?(参考数据lg2=0.3010,lg3=0.4771)

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(本小题满分10分)选修4-5:不等式选讲
设函数
(I)若a=-1,解不等式
(II)如果的取值范围。

请考生在22、23两题中任选一题作答,如果都做,则按所做的第一题记分。
(本小题满分10分)选修4-1:几何证明选讲
如图,AB是⊙O的直径,C、F为⊙O上的点,CA是∠BAF的角平分线,过点C
作CD⊥AF交AF的延长线于D点,CM⊥AB,垂足为点M。
(I)求证:DC是⊙O的切线; (II)求证:AM:MB=DF·DA。

(本小题满分12分)
已知函数是增函数。
(I)求实数p的取值范围;
(II)设数列的通项公式为前n项和为S,求证:

(本小题满分12分)
已知圆,Q是圆上一动点,AQ的垂直平分线交CQ于点M,设点M的轨迹为E。
(I)求轨迹E的方程;
(II)过点P(1,0)的直线交轨迹E于两个不同的点A、B,(O是坐标原点)的面积,若弦AB的中点为R,求直线OR斜率的取值范围。

(本小题满分12分)
如图,正方形ADEF和等腰梯形ABCD垂直,已知BC=2AD=4,
(I)求证:面ABF;
(II)求异面直线BE与AC所成的角的余弦值;
(III)在线段BE上是否存在一点P,使得平面平面BCEF?若存在,求出的值,若不存在,请说明理由。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号