请考生在22、23两题中任选一题作答,如果都做,则按所做的第一题记分。
(本小题满分10分)选修4-1:几何证明选讲
如图,AB是⊙O的直径,C、F为⊙O上的点,CA是∠BAF的角平分线,过点C
作CD⊥AF交AF的延长线于D点,CM⊥AB,垂足为点M。
(I)求证:DC是⊙O的切线; (II)求证:AM:MB=DF·DA。
已知函数
(1)求的单调区间;
(2)设,若
在
上不单调且仅在
处取得最大值,求
的取值范围.
如下图(图1)等腰梯形PBCD,A为PD上一点,且AB⊥PD,AB=BC,AD=2BC,沿着AB折叠使得二面角P-AB-D为的二面角,连结PC、PD,在AD上取一点E使得3AE=ED,连结PE得到如下图(图2)的一个几何体.
(1)求证:平面PAB平面PCD;
(2)求PE与平面PBC所成角的正弦值.
在锐角三角形ABC中,角A,B,C所对的边分别为,且
(1)求角A;
(2)若,求
的取值范围.
等比数列为递增数列,且
,数列
(n∈N※)
(1)求数列的前
项和
;
(2),求使
成立的最小值
.
(本小题满分14分)已知函数的图像过点
,且在该点的切线方程为
.
(Ⅰ)若在
上为单调增函数,求实数
的取值范围;
(Ⅱ)若函数恰好有一个零点,求实数
的取值范围.