设曲线在点
处的切线斜率为
,且
,对一切实数
,不等式
恒成立
.
(1) 求的值;
(2) 求函数的表达式;
(3) 求证:.
设函数.
(1)求函数的单调区间和极值。
(2)若关于的方程
有三个不同实根,求实数
的取值范围;
(3)已知当(1,+∞)时,
恒成立,求实数
的取值范围.
阅读下面材料:根据两角和与差的正弦公式,有 ----------①
------②
由①+② 得------③
令有
代入③得 .
(1)利用上述结论,试求的值。
(2)类比上述推证方法,根据两角和与差的余弦公式,证明:;
已知中至少有一个小于2。
已知,复数z =
.
(1)实数m取什么值时,复数z为纯虚数?
(2)实数m取什么值时,复数z对应的点在直线上?