如图,已知四边形ABCD 是矩形,PA⊥平面ABCD,M, N分别是AB, PC的中点.
(1)求证:MN∥平面PAD;
(2)求证:MN⊥DC;
(本小题12分)
已知椭圆,斜率为
的直线
交椭圆
于
两点,且点
在直线
的上方,
(1)求直线与
轴交点的横坐标
的取值范围;
(2)证明:的内切圆的圆心在一条直线上.
(本小题12分)
随机抽取某中学甲乙两个班级各10名同学,测量他们的身高(单位:cm),获得的数据如下:
甲:182 170 171 179 179 162 163 168 168 158
乙:181 170 173 176 178 179 162 165 168 159
(1)根据上述的数据作出茎叶图表示;
(2)判断哪个班级的平均身高较高,并求出甲班的方差;
(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,身高176cm的同学被抽中的概率是多少?
(本小题12分)
已知四棱台的三视图如图所示,
(1)求证:平面
;
(2)求证:平面平面
;
(3)求此四棱台的体积.
(本小题12分)
已知数列的前
项和为
,
且
(1)求数列的通项公式;
(2)求数列的前
项的和.
(本小题满分14分)在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东且与点A相距40
海里的位置B,经过40分钟又测得该船已行驶到点A北偏东
(其中
,
)且与点A相距10
海里的位置C.
(1)求该船的行驶速度(单位:海里/小时);
(2)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由