数列满足
,
(
),
是常数.
(1)当时,求
及
的值;
(2)数列是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由;
(3)求的取值范围,使得存在正整数
,当
时总有
。
(本小题满分10分)在中,内角
所对的边分别为
,若
.
(1)求证:成等比数列;(2)若
,求
的面积
.
(本小题满分14分)已知常数,函数
,
.
(1)讨论在
上的单调性;
(2)若在
上存在两个极值点
,
,且
,求常数
的取值范围.
(本小题满分14分)椭圆(
)的左焦点为
,右焦点为
,离心率
.设动直线
与椭圆
相切于点
且交直线
于点
,
的周长为
.
(1)求椭圆的方程;
(2)求两焦点、
到切线
的距离之积;
(3)求证:以为直径的圆恒过点
(本小题满分14分)已知数列的前
项之和为
(
),且满足
.
(1)求证:数列是等比数列,并求数列
的通项公式;
(2)求证:.
(本小题满分14分)如图,四边形为菱形,
为平行四边形,且平面
平面
,设
与
相交于点
,
为
的中点.
(1)证明:;
(2)若,
,
,求三棱锥
的体积.