数列满足
,
(
),
是常数.
(1)当时,求
及
的值;
(2)数列是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由;
(3)求的取值范围,使得存在正整数
,当
时总有
。
设
(Ⅰ)计算:的值;
(Ⅱ)猜想具备的一个性质,并证明.
(本小题满分12分)“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.
(Ⅰ) 完成2×2列联表;
正误 年龄 |
正确 |
错误 |
合计 |
20~30 |
|||
30~40 |
|||
合计 |
(Ⅱ)判断是否有90%的把握认为猜对歌曲名称与否和年龄有关;说明你的理由.(下面的临界值表供参考)
![]() |
0.10 |
0.05 |
0.010 |
0.005 |
![]() |
2.706 |
3.841 |
6.635 |
7.879 |
(参考公式:,
)
(本小题满分12分)已知,试证明
至少有一个不小于1.
(本大题满分10分)选修4-5:不等式选讲
设函数
(Ⅰ)解不等式;
(Ⅱ)当,
时,证明:
.
(本小题满分10分) 选修4-4:极坐标系与参数方程
在极坐标系中曲线的极坐标方程为
,点
.以极点
为原点,以极轴为
轴正半轴建立直角坐标系.斜率为
的直线
过点
,且与曲线
交于
两点.
(Ⅰ)求出曲线的直角坐标方程和直线
的参数方程;
(Ⅱ)求点到两点
的距离之积.