数列满足
,
(
),
是常数.
(1)当时,求
及
的值;
(2)数列是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由;
(3)求的取值范围,使得存在正整数
,当
时总有
。
在△ABC中,内角A、B、C所对边的边长分别是a、b、c,已知c=2,C=.
(Ⅰ)若△ABC的面积等于,求a、b;
(Ⅱ)若,求△ABC的面积.
已知函数f(x)=sin(ωx+φ) (0<φ<π,ω>0)过点
,函数y=f(x)图象的两相邻对称轴间的距离为
.
(1) 求f(x)的解析式;
(2) f(x)的图象向右平移个单位后,得到函数y=g(x)的图象,求函数g(x)的单调递减区间.
△ABC中,D在边BC上,且BD=2,DC=1,∠B=60o,∠ADC=150o,求AC的长及△ABC的面积。
若函数
(Ⅰ)求的最小正周期;
(Ⅱ)当时,求函数
的最大值与最小值.
已知函数,
.
(Ⅰ)求的最大值;
(Ⅱ)若,求
的值.