我国计划发射火星探测器,该探测器的运行轨道是以火星(其半径百公里)的中心为一个焦点的椭圆. 如图,已知探测器的近火星点(轨道上离火星表面最近的点)到火星表面的距离为百公里,远火星点(轨道上离火星表面最远的点)到火星表面的距离为800百公里. 假定探测器由近火星点第一次逆时针运行到与轨道中心的距离为百公里时进行变轨,其中、分别为椭圆的长半轴、短半轴的长,求此时探测器与火星表面的距离(精确到1百公里).
某地上年度电价为元,年用电量为亿千瓦时.本年度计划将电价调至之间,经测算,若电价调至元,则本年度新增用电量(亿千瓦时)与元成反比例.又当时,. (1)求与之间的函数关系式; (2)若每千瓦时电的成本价为元,则电价调至多少时,本年度电力部门的收益将比上年增加?[收益=用电量×(实际电价-成本价)]
已知函数,若; (1)求的值;(2)求的值;(3)解不等式.
已知函数. (1)判断函数的奇偶性,并加以证明;[来(2)用定义证明函数在区间上为增函数.
计算下列各式的值: (1) (2)
已知集合,, 全集,求: (1);(2).
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号