我国计划发射火星探测器,该探测器的运行轨道是以火星(其半径百公里)的中心
为一个焦点的椭圆
. 如图,已知
探测器的近火星点(轨道上离火星表
面最近的点)
到火星表面的距离为
百公里,远火星点(轨道上离火星表面最远的点)
到火星表面的距离为800百公里. 假定探测器由近火星点
第一次逆时针运行到与轨道中心
的距离为
百公里时进行变轨,其中
、
分别为椭圆的长半轴、短半轴的长,求此时探测器与火星表面的距离(精确到1百公里).
选修4-2:矩阵与变换
已知二阶矩阵A有特征值及对应的一个特征向量
和特征值
及对应的一个特征向量
,试求矩阵A.
A.选修4-1:几何证明选讲
如图,已知、
是圆
的两条弦,且
是线段
的垂直平分线,已知
,求线段
的长度.
.(本小题满分16分)
已知函数,并设
,
(1)若
图像在
处的切线方程为
,求
、
的值;
(2)若函数是
上单调递减,则
① 当时,试判断
与
的大小关系,并证明之;
② 对满足题设条件的任意、
,不等式
恒成立,求
的取值范围
(本小题满分16分)
已知分别以和
为公差的等差数列
和
满足
,
,
(1)若,
≥2917,且
,求
的取值范围;
(2)若,且数列
…的前
项和
满足
,
①求数列和
的通项公式;
②令,
,
>0且
,探究不等式
是否对一切正整数
恒成立?
(本小题满分16分)
某厂生产一种仪器,由于受生产能力和技术水平的限制,会产生一些次品.根据经验知道,该厂生产这种仪器,次品率与日产量
(件)之间大体满足关系:
(注:次品率,如
表示每生产10件产品,约有1件为次品.其余为合格品.)
已知每生产一件合格的仪器可以盈利元,但每生产一件次品将亏损
元,故厂方希望定出合适的日产量,
(1)试将生产这种仪器每天的盈利额(元)表示为日产量
(件)的函数;
(2)当日产量为多少时,可获得最大利润?