下表是某班英语和数学成绩的分布表,已知该班有50名学生,成绩分为1~5个档次。如:表中英语成绩是4分、数学成绩是2分的人数有5人。现设该班任意一位学生的英语成绩为m,数学成绩为n。
n m |
数学 |
|||||
5 |
4 |
3 |
2 |
1 |
||
英 语 |
5 |
1 |
3 |
1 |
0 |
1 |
4 |
1 |
0 |
7 |
5 |
1 |
|
3 |
2 |
1 |
0 |
9 |
3 |
|
2 |
1 |
b |
6 |
0 |
a |
|
1 |
0 |
0 |
1 |
1 |
3 |
(1)求m=4,n=3的概率;
(2)求在m≥3的条件下,n=3的概率;
(3)求a+b的值,并求m的数学期望;
(4)若m=2与n=4是相互独立的,求a,b的值。
如图,在四棱锥中,
底面
,
,
,
是
的中点.
(Ⅰ)求和平面
所成的角的大小;
(Ⅱ)证明平面
;
(Ⅲ)求二面角的正弦值.
如图,在四棱锥中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点.
求证:(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD
平行四边形的两邻边所在直线的方程为x+y+1=0及3x-4=0,其对角线的交点是D(3,3),求另两边所在的直线的方程.
已知函数(其中
为常数).
(Ⅰ)当时,求函数的单调区间;
(Ⅱ) 当时,设函数
的3个极值点为
,且
.
证明:.
如图,直角坐标系中,一直角三角形
,
,B、D在
轴上且关于原点
对称,
在边
上,BD=3DC,△ABC的周长为12.若一双曲线
以B、C为焦点,且经过A、D两点.
⑴ 求双曲线的方程;
⑵ 若一过点(
为非零常数)的直线
与双曲线
相交于不同于双曲线顶点的两点
、
,且
,问在
轴上是否存在定点
,使
?若存在,求出所有这样定点
的坐标;若不存在,请说明理由