甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.
|
优秀 |
非优秀 |
总计 |
甲班 |
10 |
|
|
乙班 |
|
30 |
|
合计 |
|
|
105 |
已知在全部105人中抽到随机抽取1人为优秀的概率为
(Ⅰ)请完成上面的列联表;
(Ⅱ)根据列联表的数据,若按的可靠性要求,能否认为“成绩与班级有关系” .
(Ⅲ)若按下面的方法从甲班优秀的学生抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到6或10号的概率.
参考公式:
(本小题满分12分)
如图(1)在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分别是PC、PD、BC的中点,现将△PDC沿CD折起,使平面PDC⊥平面ABCD(如图2)
(1)求二面角G-EF-D的大小;
(2)在线段PB上确定一点Q,使PC⊥平面ADQ,并给出证明过程.
(本小题满分12分)
在△ABC中,角A、B、C所对的边分别为a、b、c,已知,
,
.
(I)求c及△ABC的面积S;
(II)求.
从某地成年男子中随机抽取n人,测得平均身高=172cm,标准差sx=7.6cm,平均体重
=72kg,标准差sy=15.2kg,相关系数 r=
=0.5.求由身高估计平均体重的回归方程
=a+bx,以及由体重估计平均身高的回归方程
=c+dy.
一个工厂在某年里每月产品的总成本y(万元)与该月产量x(万件)之间有如下组对应数据:
x |
1.08 |
1.12 |
1.19 |
1.28 |
1.36 |
1.48 |
1.59 |
1.68 |
1.80 |
1.87 |
1.98 |
2.07 |
y |
2.25 |
2.37 |
2.40 |
2.55 |
2.64 |
2.75 |
2.92 |
3.03 |
3.14 |
3.26 |
3.36 |
3.50 |
(1)画出散点图;
(2)求月总成本y与月总产量x之间的回归直线方程.
已知10只狗的血球体积及红血球的测量值如下:
x |
45 |
42 |
46 |
48 |
42 |
35 |
58 |
40 |
39 |
50 |
y |
6.53 |
6.30 |
9.25 |
7.50 |
6.99 |
5.90 |
9.49 |
6.20 |
6.55 |
7.72 |
x(血球体积,mm),y(血红球数,百万)
(1)画出上表的散点图;(2)求出回归直线并且画出图形。