甲、乙、丙三台机床各自独立的加工同一种零件,已知甲、乙、丙三台机床加工的零件是一等品的概率分别为0.7、0.6、0.8,乙、丙两台机床加工的零件数相等,甲机床加工的零件数是乙机床加工的零件数的二倍.
(1)从甲、乙、丙加工的零件中各取一件检验,求至少有一件一等品的概率;
(2)将三台机床加工的零件混合到一起,从中任意的抽取一件检验,求它是一等品的概率;
(3)将三台机床加工的零件混合到一起,从中任意的抽取4件检验,求一等品的个数不少于3个的概率。
已知,求
的范围.
已知AB、CD是两平行平面、
内的异面线段,AB=
,CD=
,它们所成的角为
.平面
、
的距离为
.求证:不论AB、CD在
、
内如何移动,三棱锥
的体积不变,并用
,
,
,
表示体积.
在1,2,3,…,100中任意取三个数字构成等差数列,有几种不同的排法?
如图,直线分抛物线
与
轴所围图形为面积相等的两部分,求实数
的值.
(本题满分18分;第(1)小题4分,第(2)小题6分,第(3)小题8分)
设数列是等差数列,且公差为
,若数列
中任意(不同)两项之和仍是该数列中的一项,则
称该数列是“封闭数列”.
(1)若,判断该数列是否为“封闭数列”,并说明理由?
(2)设是数列
的前
项和,若公差
,试问:是否存在这样的“封闭数列”,使
;若存
在,求
的通项公式,若不存在,说明理由;
(3)试问:数列为“封闭数列”的充要条件是什么?给出你的结论并加以证明.