已知椭圆的左、右焦点分别为F1、F2,短轴端点分别为A、B,且四边形F1AF2B是边长为2的正方形(I)求椭圆的方程;(II)若C、D分别是椭圆长轴的左、右端点,动点M满足,连结CM交椭圆于P,证明为定值(O为坐标原点);(III)在(II)的条件下,试问在x轴上是否存在异于点C的定点Q,使以线段MP为直径的圆恒过直线DP、MQ的交点,若存在,求出Q的坐标,若不存在,说明理由
平面内给定三个向量,,,回答下列问题 (1)求满足的实数 (2)若∥,求实数
设是△ABC三边上的点,它们使,,若,,试用将,表示出来
若,求函数的最大值和最小值,并求出取得最值时的值。
已知,且 , 求的值.
已知圆:,直线的方程为,点是直线上一动点,过点作圆的切线、,切点为、. (1)当的横坐标为时,求∠的大小; (2)求证:经过A、P、M三点的圆必过定点,并求出该定点的坐标; (3)求证:直线必过定点,并求出该定点的坐标; (4)求线段长度的最小值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号