已知椭圆 的左、右焦点坐标分别是 ,离心率是 ,直线 与椭圆 交与不同的两点 ,以线段为直径作圆 ,圆心为 .
(Ⅰ)求椭圆
的方程;
(Ⅱ)若圆
与
轴相切,求圆心
的坐标;
(Ⅲ)设
是圆
上的动点,当
变化时,求
的最大值.
对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得
他们的最大速度(m/s)的数据如下表.
甲 |
27 |
38![]() |
30 |
37 |
35 |
31 |
乙 |
33 |
29 |
38 |
34 |
28 |
36 |
(1)画出茎叶图
(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、中位数、标准差,并判断选谁参加比赛更合适.
已知:p:方程x2-mx+1=0有两个不等的正根;q:不等式|x-1|>m的解集为R。若p或q为真命题,p且q为假命题,求实数m的取值范围。
如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,M为线段AB的中点,将△ACD沿折起,使平面ACD⊥平面ABC,得到几何体D-ABC,如图2所示.
(Ⅰ)求证:BC⊥平面ACD;
(Ⅱ)求二面角A-CD-M的余弦值.
如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为正方形,PA=AB=2,M, N分别为PA, BC的中点.
(Ⅰ)证明:MN∥平面PCD;
(Ⅱ)求MN与平面PAC所成角的正切值.
已知直线l1:2x-y+2=0与l2:x+2y-4=0,点P(1, m).
(Ⅰ)若点P到直线l1, l2的距离相等,求实数m的值;
(Ⅱ)当m=1时,已知直线l经过点P且分别与l1, l2相交于A, B两点,若P恰好
平分线段AB,求A, B两点的坐标及直线l的方程.