在2012年“双节”期间,高速公路车辆较多。某调查公司在一服务区从七座以下小型汽车中,按进服务区的先后每间隔50辆就抽取一辆的抽样方法,抽取了40名驾驶员进行调查,将他们在某段高速公路上的车速(km/t)分成6段:,
,
,
,
,
后得到如图的频率分布直方图。问:
(1)该公司在调查取样中,用到的是什么抽样方法?
(2)求这40辆小型汽车车速的众数和中位数的估计值;
(3)若从车速在中的车辆中任取2辆,求抽出的2辆中速度在
中的车辆数
的分布列及其数学期望。
如图所示,在多面体,四边形
,
均为正方形,
为
的中点,过
的平面交
于F.
(Ⅰ)证明:;
(Ⅱ)求二面角余弦值.
甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为,乙获胜的概率为
,各局比赛结果相互独立.
(1)求甲在4局以内(含4局)赢得比赛的概率;
(2)记为比赛决出胜负时的总局数,求
的分布列和均值(数学期望).
在中,
,点D在
边上,
,求
的长.
无穷数列 :
,
,……,
,……,满足
,且
,对于数列
,记
,其中
表示集合
中最小的数.
(1)若数列:1,3,4,7,……,写出
,
,……,
;
(2)若,求数列
前
项的和;
(3)已知,求
的值.
已知椭圆:
,右焦点
,点
在椭圆上.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知直线与椭圆
交于
两点,
为椭圆
上异于
的动点.
(1)若直线的斜率都存在,证明:
;
(2)若,直线
分别与直线
相交于点
,直线
与椭圆
相交于点
(异于点
), 求证:
,
,
三点共线.