某地区在一年内遭到暴雨袭击的次数用表示,椐统计,随机变量
的概率分布如下:
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
(1)求的值和
的数学期望;
(2)假设第一年和第二年该地区遭到暴雨的次数互不影响,求这两年内该地区共遭到暴雨袭击次的概率。
设函数的临界点是0和4.
(1)求常数k的值;
(2)确定函数的单调区间和极值.
已知函数(
为自然对数的底)。
(Ⅰ)求函数的单调递增区间;
(Ⅱ)求曲线在点
处的切线方程。
已知函数f(x)=x3-3x2-9x+1
(1)求函数在区间[-4,4]上的单调性.
(2)求函数在区间[-4,4]上的极大值和极小值与最大值和最小值.
在三棱柱中,已知
,在
在底面
的投影是线段
的中点
。
(1)求点C到平面的距离;
(2)求二面角的余弦值;
(3)若M,N分别为直线上动点,求MN的最小值。
如图1,在Rt△ABC中,∠C=90°,BC=6,AC=3,D,E分别是AC,AB上的点,且DE∥BC,DE=4,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.
图1图2
(1)求证:A1C⊥平面BCDE;
(2)过点E作截面平面
,分别交CB于F,
于H,求截面
的面积;
(3)线段BC上是否存在点P,使平面A1DP与平面A1BE成的角?说明理由.