(本小题满分12分)
设函数.
(1)当时,求
的单调区间;
(2)若在
上的最大值为
,求
的值.
已知等比数列中,
且
,
,
成等差数列,
(1)求数列的通项公式;
(2)求数列的前
项的和.
已知,其中
(1)求函数的最小正周期,并从下列的变换中选择一组合适变换的序号,经过这组变换的排序,可以把函数
的图像变成
的图像;(要求变换的先后顺序)
①纵坐标不变,横坐标变为原来的倍,
②纵坐标不变,横坐标变为原来的2倍,
③横坐标不变,纵坐标变为原来的倍,
④横坐标不变,纵坐标变为原来的倍,
⑤向上平移一个单位,
⑥向下平移一个单位,
⑦向左平移个单位,
⑧向右平移个单位,
⑨向左平移个单位,
⑩向右平移个单位,
(2)在中角
对应边分别为
,
,求
的长.
已知(
).
(1)当时,判断
在定义域上的单调性;
(2)若在
上的最小值为
,求
的值;
(3)若在
上恒成立,试求
的取值范围.
已知二次函数的图象经过坐标原点,其导函数为
,数列
的前
项和为
,点
均在函数
的图像上.
(1)求的解析式;
(2)求数列的通项公式;
(3)设,
是数列
的前n项和,求使得
对所有
都成立的最小正整数
.
(1)已知命题和命题
,若
是
的必要不充分条件,求实数
的取值范围.
(2)已知命题方程
的一根在
内,另一根在
内.
命题函数
的定义域为全体实数.
若为真命题,求实数
的取值范围.