(本小题满分12分)设椭圆:,抛物线:.(1) 若经过的两个焦点,求的离心率;(2) 设,又为与不在轴上的两个交点,若的垂心为,且的重心在上,求椭圆和抛物线的方程.
一束光线从点出发,经x轴反射到圆上的最短路径是()
已知定义在上的函数同时满足下列三个条件:①;②对任意都有;③当时,. (1)求、的值; (2)证明:函数在上为减函数; (3)解关于的不等式.
设,若,,. (1)证明:且; (2)试判断函数在内的零点个数,并说明理由.
已知函数,若. (1)写出的解析式; (2)当时,总有恒成立,求实数的取值范围.
某化工厂生产的一种溶液,若初时含杂质2%,每过滤一次可使杂质含量减少.(已知:,) (1)求杂质含量与过滤次数的函数关系式; (2)按市场要求,杂质含量不能超过0.1%.问至少应过滤几次才能使产品达到市场要求?
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号