游客
题文

在数列 { a n } 中, a 1 = 0 ,且对任意 k N + , a 2 k - 1 , a 2 k , a 2 k + 1 成等差数列,其公差为 d k .
(Ⅰ)若 d k = 2 k ,证明 a 2 k , a 2 k + 1 , a 2 k + 2 成等比数列( k N +
(Ⅱ)若对任意 k N + a 2 k , a 2 k + 1 , a 2 k + 2 成等比数列,其公比为 q k .证明:对任意 n 2 , n N + ,有 3 2 < 2 n - k = 2 n k 2 a k 2

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知正四棱柱ABCDA1B1C1D1,点E在棱D1D上,截面EACD1B且面EAC与底面ABCD所成的角为45°,AB=a,求:

(1)截面EAC的面积;
(2)异面直线A1B1AC之间的距离;
(3)三棱锥B1EAC的体积.

在长方体ABCDA1B1C1D1中,AB=4,BC=3,CC1=2,如图:
(1)求证:平面A1BC1∥平面ACD1
(2)求(1)中两个平行平面间的距离;
(3)求点B1到平面A1BC1的距离.

正方体ABCDA1B1C1D1的棱长为1,求异面直线A1C1AB1间的距离.

把正方形ABCD沿对角线AC折起成直二面角,点EF分别是ADBC的中点,点O是原正方形的中心,求:

(1)EF的长;
(2)折起后∠EOF的大小.

p:-2<m<0,0<n<1;q:关于x的方程x2+mx+n=0有2个小于1的正根,试分析pq的什么条件.(充要条件)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号