为了对某课题进行研究,用分层抽样方法从三所高校
的相关人员中,抽取若干人组成研究小组、有关数据见下表(单位:人)
(I)求
;
(II)若从高校
抽取的人中选2人作专题发言,求这二人都来自高校
的概率。
为了调査某大学学生在某天上网的时间,随机对lOO名男生和100名女生进行了不记名的问卷调查.得到了如下的统计结果:
表l:男生上网时间与频数分布表
表2:女生上网时间与频数分布表
(I)从这100名男生中任意选出3人,其中恰有1人上网时间少于60分钟的概率;
(II)完成下面的2X2列联表,并回答能否有90%的把握认为“大学生上网时间与性别有关”?
表3:•
附:
如图,有两座建筑物AB和CD都在河的对岸(不知 道它们的高度,且不能到达对岸),某人想测量两 座建筑物尖顶A、C之间的距离,但只有卷尺和测 角仪两种工具.若此人在地面上选一条基线EF,用 卷尺测得EF的长度为a,并用测角仪测量了一些角度:,
,
,
,
请你用文字和公式写出计算A、C之间距离的步骤和结果.
已知集合是正整数
的一个排列
,函数
对于
,定义:
,
,称
为
的满意指数.排列
为排列
的生成列.
(Ⅰ)当时,写出排列
的生成列;
(Ⅱ)证明:若和
为
中两个不同排列,则它们的生成列也不同;
(Ⅲ)对于中的排列
,进行如下操作:将排列
从左至右第一个满意指数为负数的项调至首项,其它各项顺序不变,得到一个新的排列.证明:新的排列的各项满意指数之和比原排列的各项满意指数之和至少增加
.
如图,椭圆的左顶点为
,
是椭圆
上异于点
的任意一点,点
与点
关于点
对称.
(Ⅰ)若点的坐标为
,求
的值;
(Ⅱ)若椭圆上存在点
,使得
,求
的取值范围.
如图1,在四棱锥中,
底面
,面
为正方形,
为侧棱
上一点,
为
上一点.该四棱锥的正(主)视图和侧(左)视图如图2所示.
(Ⅰ)求四面体的体积;
(Ⅱ)证明:∥平面
;
(Ⅲ)证明:平面平面
.