在△ABC中,角A、B、C的对边分别为a、b、c,且满足
(Ⅰ)求角B的度数;
(Ⅱ)如果b =,a + c = 3且a>c,求a、c的值.
(本小题满分12分)已知在等比数列{an}中,a1=1,且a2是a1和a3-1的等差中项.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1+2b2+3b3+…+nbn=an(n∈N*),求{bn}通项公式bn
(12分) 已知向量=
,
=
.
(1)若,求
的值;
(2)记f(x)=,在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.
(10分)设函数f(x)=mx2-mx-1.
(1)若对于一切实数x,f(x)<0恒成立,求m的取值范围;
(2)若对于x∈[1,3],恒成立,求m的取值范围.
已知函数
(1)当时,求曲线
在点
处的切线方程;
(2)求函数的极值.
如图,三棱柱ABC-A1B1C1的所有棱长都是2,又AA1⊥平面ABC,D,E分别是AC,CC1的中点.
(1)求证:AE⊥平面A1BD.
(2)求二面角D-BA1-A的余弦值.
(3)求点B1到平面A1BD的距离.