一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.
(Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;
(Ⅱ)先从袋中随机取一个球,该球的编号为
,将球放回袋中,然后再从袋中随机取一个球,该球的编号为
,求
的概率.
在长为12 cm的线段AB上任取一点M,并以线段AM为边作正方形.试求这个正方形的面积介于36 cm2和81 cm2之间的概率.有条件的同学可以用计算机或计算器模拟这个试验,并且估计所求随机事件的概率.
利用随机模拟方法计算图3-3-14中阴影部分(y=x3和x=2以及x轴所围成的部分)的面积.
图3-3-14
向图3-3-13中所示正方形内随机地投掷飞标,
图3-3-13
求飞标落在阴影部分的概率.
已知双曲线=1的右焦点是F,右顶点是A,虚轴的上端点是B,
·
=6-4
,∠BAF=150°.
(1)求双曲线的方程;
(2)设Q是双曲线上的点,且过点F、Q的直线l与y轴交于点M,若+2
=0,求直线l的斜率.
过点M(0,1)作直线,使它被直线l1:x-3y+10=0和l2:2x+y-8=0所截得的线段恰好被M平分,求此直线方程.