(1)利用“五点法”列表并画出函数在长度为一个周期的闭区间的简图
(2)并说明该函数图象可由y=sinx(xR)的图象经过怎样平移和伸缩变换得到的。
已知函数f(x)=2cosxsin(x+)-
sin2x+sinxcosx.
(1)求函数f(x)的单调递减区间;
(2)将函数f(x)的图象沿x轴向右平移m个单位后的图象关于直线x=对称,求m的最小正值.
已知a>0,函数f(x)=-2asin(2x+)+2a+b,当x∈[0,
]时,-5≤f(x)≤1.
(1)求常数a,b的值;
(2)设g(x)=f(x+)且lg[g(x)]>0,求g(x)的单调区间.
设函数f(x)=sin(-
)-2cos2
.
(1)求y=f(x)的最小正周期及单调递增区间;
(2)若函数y=g(x)与y=f(x)的图象关于直线x=2对称,求当x∈[0,1]时,函数y=g(x)的最大值.
已知函数f(x)=Asin(ωx+φ)+1(ω>0,A>0,0<φ<)的周期为π,f(
)=
+1,且f(x)的最大值为3.
(1)写出f(x)的表达式;
(2)写出函数f(x)的对称中心,对称轴方程.
是否存在α∈(-,
),β∈(0,π),使等式sin(3π-α)=
cos(
-β),
cos(-α)=-
cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由.