游客
题文

(本小题满分12分)
一个袋子内装有若干个黑球,个白球,个红球(所有的球除颜色外其它均相同),从中任取个球,每取得一个黑球得分,每取一个白球得分,每取一个红球得分,已知得分的概率为,用随机变量X表示取个球的总得分.
(Ⅰ)求袋子内黑球的个数;
(Ⅱ)求X的分布列.

科目 数学   题型 解答题   难度 容易
知识点: 随机思想的发展
登录免费查看答案和解析
相关试题

(本题满分10分) 选修4—1:几何问题选讲
如图,已知AB是⊙O的直径,弦CD与AB垂直,垂足为M,E是CD延长线上的一点,且AB=10,CD=8,3DE=4OM,过F点作⊙O的切线EF,BF交CD于G

(Ⅰ)求EG的长;
(Ⅱ)连接FD,判断FD与AB是否平行,为什么?

(本题满分10分) 选修4—5:不等式选讲
已知关于的不等式对于任意的恒成立
(Ⅰ)求的取值范围;
(Ⅱ)在(Ⅰ)的条件下求函数的最小值.

(本题满分10分) 选修4—4:极坐标与参数方程
在直角坐标平面内,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.已知点的极坐标分别为,曲线的参数方程为为参数).
(Ⅰ)求直线的直角坐标方程;
(Ⅱ)若直线和曲线C只有一个交点,求的值.

(本小题满分12分)已知函数
(Ⅰ)当对任意的实数x恒成立,求a的取值范围;
(Ⅱ)若

(本小题满分12分)如图,圆轴相切于点,与轴正半轴相交于两点(点在点的左侧),且

(Ⅰ)求圆的方程;
(Ⅱ)过点任作一条直线与椭圆相交于两点,连接,求证:

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号