游客
题文

、某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min.
(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;
(2)这名学生在上学路上因遇到红灯停留的总时间至多是4min的概率.             
(3)求这名学生在上学路上因遇到红灯停留的总时间的分布列、期望及方差

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

如图,在极坐标系 Ox 中, A ( 2 , 0 ) B ( 2 , π 4 ) C ( 2 , 3 π 4 ) D ( 2 , π ) ,弧 AB BC CD 所在圆的圆心分别是 ( 1 , 0 ) ( 1 , π 2 ) ( 1 , π ) ,曲线 M 1 是弧 AB ,曲线 M 2 是弧 BC ,曲线 M 3 是弧 CD .

(1)分别写出 M 1 M 2 M 3 的极坐标方程;

(2)曲线 M M 1 M 2 M 3 构成,若点 P M 上,且 | OP | = 3 ,求 P 的极坐标.

已知曲线 Cy= x 2 2 D为直线 y= - 1 2 上的动点,过 DC的两条切线,切点分别为 AB.

(1)证明:直线 AB过定点:

(2)若以 E(0, 5 2 )为圆心的圆与直线 AB相切,且切点为线段 AB的中点,求四边形 ADBE的面积.

已知函数 f ( x ) = 2 x 3 - a x 2 + b .

(1)讨论 f ( x ) 的单调性;

(2)是否存在 a , b ,使得 f ( x ) 在区间 [ 0 , 1 ] 的最小值为 - 1 且最大值为1?若存在,求出 a , b 的所有值;若不存在,说明理由.

图1是由矩形 ADEB,Rt△ ABC和菱形 BFGC组成的一个平面图形,其中 AB=1, BE= BF=2,∠ FBC=60°,将其沿 ABBC折起使得 BEBF重合,连结 DG,如图2.

(1)证明:图2中的 ACGD四点共面,且平面 ABC⊥平面 BCGE

(2)求图2中的二面角 B−CG−A的大小.

ΔABC 的内角的对边分别为 a , b , c ,已知 a sin A + C 2 = b sin A

(1)求 B

(2)若 ΔABC 为锐角三角形,且 c = 1 ,求 ΔABC 面积的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号