、某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min.
(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;
(2)这名学生在上学路上因遇到红灯停留的总时间至多是4min的概率.
(3)求这名学生在上学路上因遇到红灯停留的总时间的分布列、期望及方差
如图,在极坐标系 中, , , , ,弧 , , 所在圆的圆心分别是 , , ,曲线 是弧 ,曲线 是弧 ,曲线 是弧 .
(1)分别写出 , , 的极坐标方程;
(2)曲线 由 , , 构成,若点 在 上,且 ,求 的极坐标.
已知曲线 C: y= , D为直线 y= 上的动点,过 D作 C的两条切线,切点分别为 A, B.
(1)证明:直线 AB过定点:
(2)若以 E(0, )为圆心的圆与直线 AB相切,且切点为线段 AB的中点,求四边形 ADBE的面积.
已知函数 .
(1)讨论 的单调性;
(2)是否存在 ,使得 在区间 的最小值为 且最大值为1?若存在,求出 的所有值;若不存在,说明理由.
图1是由矩形 ADEB,Rt△ ABC和菱形 BFGC组成的一个平面图形,其中 AB=1, BE= BF=2,∠ FBC=60°,将其沿 AB, BC折起使得 BE与 BF重合,连结 DG,如图2.
(1)证明:图2中的 A, C, G, D四点共面,且平面 ABC⊥平面 BCGE;
(2)求图2中的二面角 B−CG−A的大小.
的内角的对边分别为
,已知
.
(1)求 ;
(2)若 为锐角三角形,且 ,求 面积的取值范围.