已知椭圆的中心在坐标原点,焦点在
轴上,椭圆
上的点到焦点距离的最大值为
,最小值为
.
(Ⅰ)求椭圆方程;
(Ⅱ)若直线与椭圆交于不同的两点
、
,且线段
的垂直平分线过定点
,求
的取值范围。
设,等差数列
中
,
,记
=
,令
,数列
的前n项和为
.
(Ⅰ)求的通项公式和
;
(Ⅱ)求证:;
(Ⅲ)是否存在正整数,且
,使得
成等比数列?若存在,求出
的值,若不存在,说明理由.
记函数f(x)=的定义域为A,g(x)=lg
的定义域为B.
(1)求A;
(2)若BA,求实数a的取值范围.
求关于x的方程ax2-(a2+a+1)x+a+1=0至少有一个正根的充要条件.
已知集合U=R,UA=
,B={x|x2+3(a+1)x+a2-1=0},且A∪B=A,求实数a的取值范围.
写出下列命题的否命题及命题的否定形式,并判断真假:
(1)若m>0,则关于x的方程x2+x-m=0有实数根;
(2)若x、y都是奇数,则x+y是奇数;
(3)若abc=0,则a、b、c中至少有一个为零.