已知直线和直线
,求分别满足下列条件的
的值
(1) 直线过点
,并且直线
和
垂直
(2)直线和
平行,且直线
在
轴上的截距为-3
已知数列满足
,
,
.
(1)若成等比数列,求
的值;
(2)是否存在,使数列
为等差数列?若存在,求出所有这样的
;若不存在,说明理由.
在锐角中,角
的对边分别为
.已知
.
(1)求B;
(2)若,求
.
(1)已知函数f(x)=ex-1-tx,∃x0∈R,使f(x0)≤0,求实数t的取值范围;
(2)证明:<ln
<
,其中0<a<b;
(3)设[x]表示不超过x的最大整数,证明:[ln(1+n)]≤[1++ +
]≤1+[lnn](n∈N*).
如图,矩形ABCD中,|AB|=2,|BC|=2.E,F,G,H分别是矩形四条边的中点,分别以HF,EG所在的直线为x轴,y轴建立平面直角坐标系,已知
=λ
,
=λ
,其中0<λ<1.
(1)求证:直线ER与GR′的交点M在椭圆Γ:+y2=1上;
(2)若点N是直线l:y=x+2上且不在坐标轴上的任意一点,F1、F2分别为椭圆Γ的左、右焦点,直线NF1和NF2与椭圆Γ的交点分别为P、Q和S、T.是否存在点N,使得直线OP、OQ、OS、OT的斜率kOP、kOQ、kOS、kOT满足kOP+kOQ+kOS+kOT=0?若存在,求出点N的坐标;若不存在,请说明理由.
甲、乙、丙三人进行乒乓球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为,各局比赛的结果相互独立,第1局甲当裁判.
(1)求第4局甲当裁判的概率;
(2)用X表示前4局中乙当裁判的次数,求X的分布列和数学期望.