如图所示,作斜率为的直线
与抛物线
相交于不同的两点B、C,点A(2,1)在直线
的右上方.
(Ⅰ)求证:△ABC的内心在直线x=2上;
(Ⅱ)若,求△ABC内切圆的半径.
椭圆,椭圆
的一个焦点坐标为
,斜率为
的直线
与椭圆
相交于
两点,线段
的中点
的坐标为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设为椭圆
上一点,点
在椭圆
上,且
,则直线
与直线
的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.
已知曲线的极坐标方程是
,以极点为平面直角坐标系的原点,极轴为
轴的正半轴,建立平面直角坐标系,直线
的参数方程是
(
为参数).
(Ⅰ)求曲线的直角坐标方程与直线
的普通方程;
(Ⅱ)设点,若直线
与曲线
交于
,
两点,且
,求实数
的值.
以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位已知直线 的参数方程为
(t为参数,
),曲线C的极坐标方程为
(Ⅰ)求曲线C的直角坐标方程。
(Ⅱ)设直线 与曲线C相交于A,B两点,当
变化时,求
的最小值
已知函数及
上一点
,过点
作直线
.
(Ⅰ)求使直线和
相切,且以
为切点的直线方程;
(Ⅱ)求使直线和
相切,且切点异于
的直线方程.