椭圆,椭圆的一个焦点坐标为,斜率为的直线与椭圆相交于两点,线段的中点的坐标为.(Ⅰ)求椭圆的方程;(Ⅱ)设为椭圆上一点,点在椭圆上,且,则直线与直线的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.
已知 (1)若存在单调递减区间,求的取值范围; (2)若时,求证成立; (3)利用(2)的结论证明:若
已知函数f(x)=x2-x+alnx (1)当x≥1时,f(x)≤x2恒成立,求a的取值范围; (2)讨论f(x)在定义域上的单调性;
若函数为奇函数,且过点,函数. (1)求函数的解析式并求其定义域; (2)求函数的单调区间; (3)若当时不等式恒成立,求实数a的取值范围.
已知函数 (1)求的定义域; (2)求的值域。
已知函数。 (I)求函数的最小值;(Ⅱ)已知,求证:。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号