游客
题文

(本大题满分12分)
若存在常数k和b (k、b∈R),使得函数对其定义域上的任意实数x分别满足:,则称直线l:的“隔离直线”.已知 (其中e为自然对数的底数).
(1)求的极值;
(2)函数是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

已知抛物线的顶点为坐标原点,椭圆的对称轴是坐标轴,抛物线轴上的焦点恰好是椭圆的焦点
(Ⅰ)若抛物线和椭圆都经过点,求抛物线和椭圆的方程;
(Ⅱ)已知动直线过点,交抛物线两点,直线被以为直径的圆截得的弦长为定值,求抛物线的方程;
(Ⅲ)在(Ⅱ)的条件下,分别过的抛物线的两条切线的交点的轨迹为,直线与轨迹交于点,求的最小值。

如图,为圆的直径,点在圆上,
已知,,
,
直角梯形所在平面与圆所在平面互相垂直。(Ⅰ)求证:平面平面
(Ⅱ)求平面与平面所成角的余弦值;
(Ⅲ)在上是否存在一点,使∥平面?
若不存在,请说明理由;若存在,请找出这一点,并证明之

三角形的三个内角的对边的长分别为,有下列两个条件:(Ⅰ)成等差数列;(Ⅱ)成等比数列。
现给出三个结论:
;②;③
请你选取给定的两个条件中的一个条件为条件,三个结论中的两个为结论,组建一个你认为正确的命题,并证明之

为从甲、乙两名运动员中选拔一人参加2010年广州亚运会跳水项目,对甲、乙两名运动员进行培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取6次,得出茎叶图如图所示
(Ⅰ)从平均成绩及发挥稳定性的角度考虑,你认为选派哪名运动员合适?
(Ⅱ)若将频率视为概率,对甲运动员在今后3次比赛成绩进行预测,记这3次成绩中高于80分的次数为,求的分布列及数学期望

已知函数
(1)当时,求不等式的解集
(2)若关于的不等式的解集为R,求实数的取值范围
(3)当时,若内恒成立,求实数b的取值范围。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号