已知数列满足:
,且
(
).
(1)求证:数列为等差数列;
(2)求数列的通项公式;
(3)求右表中前行所有数的和
.
(本小题满分12分)
已知数列是一个等差数列,且
,
.(1)求
的通项
;
(2) 求前
项和
;
在△ABC中,角A、B、C所对的边分别为a、b、c(其中),设向量
,
,且向量
为单位向量.(模为1的向量称作单位向量)
(1)求∠B的大小;
(2)若,求△ABC的面积.
一船由甲地逆水驶至乙地,甲、乙两地相距 S (km),水的流速为常量a(km/h),船在静水中的最大速度为b (km/h) (b>2a),已知船每小时的燃料费用(单位:元)与船在静水中的速度 v(km/h) 的平方成正比,比例系数为 k ,问:
(1)船在静水中的航行速度 v 为多少时,全程燃料费用最少?
(2)若水速 a =" 8.4" km/h,船在静水中的最大速度为b="25" km/h,要使全程燃料费用不超过40 k S元,求船在静水中的航行速度v 的范围。
已知等比数列的前
项和为
,且
是
与2的等差中项,
等差数列中,
,点
在直线
上.
⑴求和
的值;
⑵求数列的通项
和
;
⑶ 设,求数列
的前n项和
.
某校从参加高一年级期中考试的学生中随机抽取名学生,将其数学成绩(均为整数)分成六段
,
…
后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:
(Ⅰ)求分数在内的频率,并补全这个频率分布直方图;
(Ⅱ)用分层抽样的方法在分数段为的学生中抽取一个容量为
的样本,将该样本看成一个总体,从中任取
人,求至多有
人在分数段
的概率.