一个袋中装有四个形状大小完全相同的球,球的编号分别为
,
(Ⅰ)从袋中随机取出两个球,求取出的球的编号之和不大于
的概率;
(Ⅱ)先从袋中随机取一个球,该球的编号为
,将球放回袋中,然后再从袋中随机取一个球,该球的编号为
,求
的概率。
(本小题满分15分)某生产旅游纪念品的工厂,拟在2010年度将进行系列促销活动.经市场调查和测算,该纪念品的年销售量x万件与年促销费用t万元之间满足3-x与t+1成反比例.若不搞促销活动,纪念品的年销售量只有1万件.已知工厂2010年生产纪念品的固定投资为3万元,每生产1万件纪念品另外需要投资32万元.当工厂把每件纪念品的售价定为:“年平均每件生产成本的150%”与“年平均每件所占促销费一半”之和时,则当年的产量和销量相等.(利润=收入-生产成本-促销费用)(1)求出x与t所满足的关系式;(2)请把该工厂2010年的年利润y万元表示成促销费t万元的函数;(3)试问:当2010年的促销费投入多少万元时,该工厂的年利润最大?
(本小题满分14分)如图,在正方体中,
、
分别
为棱、
的中点.(1)求证:
∥平面
;
(2)求证:平面⊥平面
;
(3)如果,一个动点从点
出发在正方体的
表面上依次经过棱、
、
、
、
上的点,
最终又回到点,指出整个路线长度的最小值并说明理由.
(本小题满分14分)
已知向量:,
.
(1)求证:为直角; (2)若
,求
的边
的长度的取值范围.
(本小题满分15分)已知圆,点
,直线
.
⑴求与圆相切,且与直线
垂直的直线方程;⑵在直线
上(
为坐标原点),存在定点
(不同于点
),满足:对于圆
上任一点
,都有
为一常数,试求所有满足条件的点
的坐标.
(本题12分)在数列{an}中,a1=2,an+1="4" an-3n+1,n∈N*.
(1)证明数列{an-n}是等比数列;(2)求数列{an}的前n项和Sn;(3)证明不等式Sn+1≤4Sn,对任意n∈N*皆成立。