袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球
(Ⅰ)试问:一共有多少种不同的结果?请列出所有可能的结果;
(Ⅱ)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率。
如图,三棱锥中,侧面
底面
,
,且
,
.
(Ⅰ)求证:平面
;
(Ⅱ)若为侧棱
的中点,求直线
与底面
所成角的正弦值.
编号为的16名篮球运动员在某次训练比赛中的得分记录如下:
运动员编号 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
得分 |
15 |
35 |
21 |
28 |
25 |
36 |
18 |
34 |
运动员编号 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
得分 |
17 |
26 |
25 |
33 |
22 |
12] |
31 |
38 |
(Ⅰ)将得分在对应区间内的人数填入相应的空格;
区间 |
![]() |
![]() |
![]() |
人数 |
(Ⅱ)从得分在区间【20,30)内的运动员中随机抽取2人,
(i)用运动员的编号列出所有可能的抽取结果;
(ii)求这2人得分之和大于50的概率.
已知各项都不相等的等差数列的前
项和为
,且
为
和
的等比中项.
(I)求数列的通项公式;
(II) 若数列满足
,且
,求数列
的前
项和
.
已知数列满足:
1)求的值; 2)求证数列
是等差数列,并求数列
的通项公式;
3)设若
恒成立,求实数
的取值范围.
某企业投资1千万元于一个高科技项目,每年可获利25%.由于企业间竞争激烈,每年底需要从利润中取出资金万元进行科研、技术改造与广告投入,方能保持原有的利润增长率.设经过
年后该项目的资金为
万元.
1)写出数列的前三项
,并猜想写出通项
.
2)求经过多少年后,该项目的资金可以达到或超过千万元.