已知函数,
,
.
(1)若从集合{0,1,2,3}中任取一个元素,
从集合{0,1,2}中任取一个元素,求方程
有两个不相等实根的概率;
(2)若从区间
中任取一个数,
从区间
中任取一个数,求方程
没有实根的概率.
已知a∈R,函数f(x)=+ln x-1.
(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)求f(x)在区间(0,e]上的最小值.
在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为2,在y轴上截得线段长为2
.
(1)求圆心P的轨迹方程;
(2)若P点到直线y=x的距离为,求圆P的方程.
已知在△ABC中,内角A,B,C所对的边分别为a,b,c,且acos C+c=b.
(1)求角A;
(2)若a=1,且c-2b=1,求角B.
如图,F是椭圆的右焦点,以点F为圆心的圆过原点O和椭圆的右顶点,设P是椭圆上的动点,P到椭圆两焦点的距离之和等于4.
(1)求椭圆和圆的标准方程;
(2)设直线l的方程为x=4,PM⊥l,垂足为M,是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.
在平面直角坐标系xOy中,经过点(0,)且斜率为k的直线l与椭圆
+y2=1有两个不同的交点P和Q.
(1)求k的取值范围;
(2)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量+
与
共线?如果存在,求k的值;如果不存在,请说明理由.