(本小题满分12分)设数列和
满足:
,数列
是等差数列,
为数列
的前
项和,且
,
(I)求数列和
的通项公式;
(II)是否存在,使
?若存在,求出
,若不存在,说明理由。
(1)直线在x轴上的截距是-1,在y轴上的截距是4,求此直线方程;
(2)求过直线x-2y+3=0和2x+y-4=0的交点,斜率为1 的直线方程。
(本小题满分10分)选修4-5:不等式选讲
设关于x的不等式lg(|x+3|+|x-7|)>a.
(1)当a=1时,解这个不等式;
(2)当a为何值时,这个不等式的解集为R.
选修4-4:坐标系与参数方程
已知极坐标系的极点在直角坐标系的原点处,极轴与轴非负半轴重合.直线
的参数方程为:
(
为参数),曲线
的极坐标方程为:
.
(1)写出曲线的直角坐标方程,并指明
是什么曲线;
(2)设直线与曲线
相交于
两点,求
的值.
(本小题满分12分)已知函数f (x)=ax-ex(a∈R),g(x)=.
(1)求函数f (x)的单调区间;
(2)x0∈(0,+∞),使不等式f (x)
g(x)-ex成立,求a的取值范围.
(本小题满分12分)已知A(-2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A,B的动点,△APB面积的最大值为2.
(1)求椭圆C的标准方程;
(2)若直线AP的倾斜角为,且与椭圆在点B处的切线交于点D,试判断以BD为直径的圆与直线PF的位置关系,并加以证明.