设f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使得f(x)在[0,x*]上单调递增,在[x*,1]上单调递减,则称f(x)为[0,1]上的单峰函数,x*为峰点,包含峰点的区间为含峰区间.对任意的[0,1]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法.
(I)证明:对任意的∈(O,1),
,若f(
)≥f(
),则(0,
)为含峰区间:若f(
)
f(
),则
为含峰区间:
(II)对给定的r(0<r<0.5),证明:存在∈(0,1),满足
,使得由(I)所确定的含峰区间的长度不大于0.5+r:
(III)选取∈(O,1),,由(I)可确定含峰区间为
或
,在所得的含峰区间内选取
,由
与
或
与
类似地可确定一个新的含峰区间,在第一次确定的含峰区间为(0,
)的情况下,试确定的值
,满足两两之差的绝对值不小于0.02,且使得新的含峰区间的长度缩短到0. 34(区间长度等于区间的右端点与左端点之差)
设锐角三角形ABC的内角A,B,C的对边分别为,且
.
(1)求角的大小;
(2)若,求
的面积及
.
已知函数
(1)当时,求函数
的单调递增区间;
(2)记函数的图象为曲线
,设点
是曲线
上的不同两点.如果在曲线
上存在点
,使得:①
;②曲线
在点
处的切线平行于直线
,则称函数
存在“中值相依切线”,试问:函数
是否存在“中值相依切线”,请说明理由.
已知双曲线的焦点与椭圆
的焦点重合,且该椭圆的长轴长为
,
是椭圆上的的动点.
(1)求椭圆标准方程;
(2)设动点满足:
,直线
与
的斜率之积为
,求证:存在定点
,
使得为定值,并求出
的坐标;
(3)若在第一象限,且点
关于原点对称,点
在
轴的射影为
,连接
并延长交椭圆于
点,求证:以
为直径的圆经过点
.
如图,四棱锥中,
,底面
为梯形,
,
,且
,
.
(1)求证:;
(2)求二面角的余弦值.
设表示数列
的前
项和.
(1)若为公比为
的等比数列,写出并推导
的计算公式;
(2)若,
,求证:
<1.