设f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使得f(x)在[0,x*]上单调递增,在[x*,1]上单调递减,则称f(x)为[0,1]上的单峰函数,x*为峰点,包含峰点的区间为含峰区间.对任意的[0,1]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法.
(I)证明:对任意的∈(O,1),
,若f(
)≥f(
),则(0,
)为含峰区间:若f(
)
f(
),则
为含峰区间:
(II)对给定的r(0<r<0.5),证明:存在∈(0,1),满足
,使得由(I)所确定的含峰区间的长度不大于0.5+r:
(III)选取∈(O,1),,由(I)可确定含峰区间为
或
,在所得的含峰区间内选取
,由
与
或
与
类似地可确定一个新的含峰区间,在第一次确定的含峰区间为(0,
)的情况下,试确定的值
,满足两两之差的绝对值不小于0.02,且使得新的含峰区间的长度缩短到0. 34(区间长度等于区间的右端点与左端点之差)
(本小题满分12分)如图几何体中,四边形ABCD为矩形,,G为FC的中点,M为线段CD上的一点,且
.
(Ⅰ)证明:AF//面BDG;
(Ⅱ)证明:面面BFC;
(Ⅲ)求三棱锥的体积V.
(本小题满分12分)设等差数列的前
项和为
.数列
的前
项和为
,且
.
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求数列
的前
项和
.
(本小题满分12分)参加市数学调研抽测的某高三学生成绩分析的茎叶图和频率分布直方图均受到不同程度的破坏,但可见部分信息如下,据此解答如下问题:
(Ⅰ)求参加数学抽测的人数、抽测成绩的中位数及分数分别在
,
内的人数;
(Ⅱ)若从分数在内的学生中任选两人进行调研谈话,求恰好有一人分数在
内的概率.
(本小题满分12分)已知函数的最小正周期为
.
(Ⅰ)求的值;
(Ⅱ)讨论在区间
上的单调性.
(本小题满分12分)设函数.
(Ⅰ)当时,求
的极值;
(Ⅱ)设上单调递增,求
的取值范围;
(Ⅲ)当时,求
的单调区间.